Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 301: 122979, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295381

RESUMO

A facile fluorescence probe BQBH was synthesized and investigated on its spectrum property. The result showed that the BQBH had high sensitivity and selectivity for Cd2+ with lowest detection determined as 0.14 µM by fluorescence response. The 1: 1 binding ratio between BQBH and Cd2+ was determined by Job's plot, and the binding details were further confirmed by 1H NMR titration, FT-IR spectrum and HRMS analysis. The applications including on test paper, smart phone and cell image were all also investigated.


Assuntos
Cádmio , Corantes Fluorescentes , Corantes Fluorescentes/química , Cádmio/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia de Ressonância Magnética
2.
Biochem Genet ; 61(5): 2116-2134, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36947296

RESUMO

Flower organ development is one of the most important processes in plant life. However, onion CMS (cytoplasmic male sterility) shows an abnormal development of floral organs. The regulation of MADS-box transcription factors is important for flower development. To further understand the role of MADS-box transcription factors in the regulation of cytoplasmic male sterility onions. We cloned the full-length cDNA of five MADS-box transcription factors from the flowers of onion using RACE (rapid amplification of cDNA ends) technology. We used bioinformatics methods for sequence analysis and phylogenetic analysis. Real-time quantitative PCR was used to detect the expression patterns of these genes in different onion organs. The relative expression levels of five flower development genes were compared in CMS onions and wild onions. The results showed that the full-length cDNA sequences of the cloned MADS-box genes AcFUL, AcDEF, AcPI, AcAG, and AcSEP3 belonged to A, B, C, and E MADS-box genes, respectively. A phylogenetic tree construction analysis was performed on its sequence. Analysis of MADS-box gene expression in wild onion and CMS onion showed that the formation of CMS onion was caused by down-regulation of AcDEF, AcPI, and AcAG gene expression, up-regulation of AcSEP3 gene expression, and no correlation with AcFUL gene expression. This work laid the foundation for further study of the molecular mechanism of onion flower development and the molecular mechanism of CMS onion male sterility.


Assuntos
Proteínas de Domínio MADS , Cebolas , Cebolas/genética , Cebolas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , DNA Complementar/metabolismo , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Flores/genética , Flores/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122076, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36368269

RESUMO

In this study, a novel dual-function probe BMP based on benzothiazole was easily synthesized and characterized through common optical technique. In the system consisting of DMF/H2O (v/v, 2/3), probe BMP showed azure and blue-green to Al3+ and Ga3+, respectively. Besides, the binding ratios of BMP to Al3+ and Ga3+ were determined as 1:1, which confirmed by Job's plot. Furthermore, for Al3+ and Ga3+, the limit of detection (LOD) was determined to be 1.51 × 10-6 M and 4.28 × 10-6 M, respectively. Moreover, it was worth noting that BMP showed good performances in paper colorimetry, cell phone colorimetric identification and cell imaging.


Assuntos
Alumínio , Corantes Fluorescentes , Corantes Fluorescentes/química , Alumínio/química , Colorimetria/métodos , Limite de Detecção , Espectrometria de Fluorescência/métodos
4.
Sheng Wu Gong Cheng Xue Bao ; 36(11): 2398-2412, 2020 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-33244934

RESUMO

The E class MADS-box genes SEPALLATA (SEP)-like play critical roles in angiosperm reproductive growth, especially in floral organ differentiation. To analyze the sequence characteristics and spatio-temporal expression patterns of E-function MADS-box SEP-like genes during kale (Brassica oleracea L. var. acephala) flower development, BroaSEP1/2/3 (GenBank No. KC967957, KC967958, KC967960) homologues, three kale SEP MADS-box gene, were isolated from the kale variety 'Fourteen Line' using Rapid amplification of cDNA ends (RACE). Sequence and phylogenetic analysis indicated that these three SEP genes had a high degree of identity with SEP1, SEP2, SEP3 from Brassica oleracea var. oleracea, Brassica rapa, Raphanus sativus and Brassica napus, respectively. Alignment of the predicted amino acid sequences from these genes, along with previously published subfamily members, demonstrated that these genes comprise four regions of the typical MIKC-type MADS-box proteins: the MADS domain, intervening (I) domain and keratin-like (K) domain, and the C-terminal domain SEPⅠ and SEP Ⅱ motif. The longest open reading frame deduced from the cDNA sequences of BroaSEP1, BroaSEP2, and BroaSEP3 appeared to be 801 bp, 759 bp, 753 bp in length, respectively, which encoded proteins of 266, 252, and 250 amino acids respectively. Expression analyses using semi-quantitative RT-PCR and quantitative real-time PCR indicate that BroaSEP1/2/3 are specifically expressed in floral buds of kale during flower development process. The expression levels of the three genes are very different at different developmental stages, also in wild type, mutant flower with increased petals, and mutant flower with decreased petals. These different patterns of gene expression maybe cause the flowers to increase or decrease the petal number.


Assuntos
Brassica , Proteínas de Domínio MADS , Brassica/genética , Brassica/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA